Fischbiologie des Weißensees
Müller Martin
EINLEITUNG

Fischbiologie des Weißensees
Teil 1

Allgemeiner Teil

- Abiotische Parameter und Fischverteilung
- Kiemennetze
- Parasitenbiologie

Spezieller Teil

- Der Weißensee
- Entwicklung der Fischerei
- Aktuelle Fischartenzusammensetzung,
- Fischbesatz und Fanglistenauswertung
1 VERTIKALE GRADIENTEN IN SEEN ... 3
1.1 Temperatur .. 3
1.2 Sauerstoff ... 4
1.3 Licht .. 5
1.4 Druck .. 5
1.5 Nährstoffe ... 5
2 FISCHVERTEILUNG .. 6
3 KIEMENNETZBEFISCHUNGEN .. 7
3.1 Faktoren die den Fangerfolg bestimmen 8
4 FISCHPARASITEN .. 11
4.1 Protozoa (Einzeller) ... 11
4.1.1 Ichthyophthirius multifiliis ... 11
4.2 Trematoda (Saugwürmer) ... 12
4.2.1 Gyrodactylus sp. .. 12
4.2.2 Dactylogyrus sp. .. 12
4.2.3 Diplostomum sp. .. 12
4.2.4 Tylodelphis sp ... 13
4.2.5 Asymphylodora tincae .. 13
4.3 Cestoda (Bandwürmer) .. 13
4.3.1 Proteocephalus exiguus ... 13
4.3.2 Trianophorus nodulosus .. 14
4.3.3 Caryophyllaeus sp. .. 15
4.3.4 Ligula intestinalis .. 15
4.4 Nematoda (Fadenwürmer) ... 16
4.4.1 Camallanus lacustris ... 16
4.4.2 Raphidascaris acus ... 16
4.5 Acanthocephala (Kratzer) .. 16
4.5.1 Acanthocephalus luei ... 17
4.6 Annelida (Ringelwürmer) ... 17
4.6.1 Piscicola geometra (Fischegel) 17
4.7 Crustacea (Krebstiere) ... 17
4.7.1 Argulus foliaceus .. 18
4.7.2 Ergasilus sieboldi ... 18
5 DER WEISSENSEE .. 19
6 LIMNOLOGISCHE ENTWICKLUNG (Kärntner Seenbericht 2000) 21
7 ENTWICKLUNG DER FISCHEREI .. 22
8 FISCHARTEN UND FANGLISTENAUSWERTUNG 23
8.1 Seeforelle (Salmo trutta formia lacustris) 24
8.2 Bachforelle (Salmo trutta formia fario) 28
8.3 Seesaibling (Salvelinus alpinus salvelinus) 28
8.4 Reinanke (Coregonus lavaretus) ... 30
8.5 Hecht (Esox lucius) ... 35
8.6 Flussbarsch (Perca fluviatilis) .. 38
8.7 Zander (Sander luciopera) ... 40
8.8 Kaulbarsch (Gymnocephalus cernuus) 41
8.9 Aitel (Leuciscus cephalus) .. 42
8.10 Schleie (Tinca tinca) .. 43
8.11 Karpfen (Cyprinus carpio) .. 46
8.12 Rotauge (Rutilus rutilus) ... 49
8.13 Rotfeder (Scardinius erythrophthalmus) ... 51
8.14 Laube (Alburnus alburnus) ... 52
8.15 Amur (Ctenopharyngodon idella) ... 53
8.16 Silberkarpfen (Hypophthalmichthys molitrix) ... 54
8.17 Bitterling (Rhodeus sericeus amarus) .. 55
8.18 Giebel (Carassius auratus gibelio) ... 56
8.19 Karausche (Carassius carassius) ... 57
8.20 Brachse (Abramis brama) .. 57
8.21 Gründling (Gobio gobio) ... 58
8.22 Elritze (Phoxinus phoxinus) ... 59
9 FLUSSKREBSE ... 61
ALLGEMEINER TEIL

1 VERTIKALE GRADIENTEN IN SEEN

1.1 Temperatur

Während der Sommerstagnation ist das Hypolimnion vom Epi- bzw. Metalimnion weitgehend isoliert und daher kommt es zu keinen Austauschvorgängen zwischen diesen Wasserschichten. Diese finden nur im Frühling und im Herbst statt, wenn der gesamte Wasserkörper von der Oberfläche bis zum Grund annähernd die gleiche Temperatur
aufweist und der gesamte Wasserkörper (oder zumindest ein Großteil davon) durch die Windenergie in Zirkulation versetzt wird (Frühjahrs- bzw. Herbstzirkulation).

Frühjahrs- bzw.
Herbstzirkulation

Abb. 1: Frühjahrs- und Herbstzirkulation bzw. Sommerstagnation am Beispiel des Weißensees.

1.2 Sauerstoff

Tiefenzone (Hypolimnion) findet auf Grund des fehlenden Lichts keine Photosynthese und damit keine Sauerstoffproduktion statt. Durch den Verbrauch durch Tiere, Bakterien und Pilze kommt es im Hypolimnion zu einer Sauerstoffzehrung während der Sommerstagnation, wodurch unter bestimmten Bedingungen der Sauerstoff in der Tiefenzone vollständig aufgebraucht werden kann.

1.3 Licht
Die Lichtverhältnisse in der Tiefe eines Gewässers werden durch die im Wasserkörper enthaltenen gelösten und partikulären Stoffe bestimmt, wobei organische (z.B. Algen, organische Moleküle, Teile von Organismen,...) und anorganische (Kalkkristalle, Sediment,…) unterschieden werden können. Alle Teilchen absorbieren und reflektieren das Licht, wodurch die Lichtintensität mit der Tiefe abnimmt und sich die spektrale Zusammensetzung ändert. Das hat wiederum großen Einfluss auf die Verbreitung der Primärproduzenten (Algen, Wasserpflanzen) die Licht benötigen um durch die Photosynthese eine Biomasse aufzubauen, welche dann von anderen Organismen genutzt werden kann.

1.4 Druck

1.5 Nährstoffe

2 FISCHVERTEILUNG

- Verschiedene Fischarten bevorzugen auf Grund der verschiedenen Nahrungspräferenzen und der unterschiedlichen Art der Nahrungsaufnahme unterschiedliche Lebensräume in einem Gewässer. Fische die hauptsächlich Bodennahrung aufnehmen halten sich in seichten Gewässerabschnitten auf, welche auch meist reich strukturiert sind. Der Hecht als Lauerjäger ist auf eine gute Tarnung und somit auf Unterstände angewiesen, wogegen Fische die hauptsächlich Zooplankton nutzen vorwiegend den Freiwasserraum besiedeln.

- Fischarten die warmes Wasser bevorzugen (Karpfen, Schleien, Rotaugen,...) besiedeln in den Sommermonaten hauptsächlich die warme Oberflächenschicht (Epilimnion), solche die kälteres bevorzugen (Reinanken, Seesaiblinge,...) nur den Wasserkörper unterhalb des Epilimnions.

Die Fischverteilung ist eng an die Nahrungspräferenzen gekoppelt und unterliegt dadurch gewöhnlich starken saisonalen Schwankungen. Im Frühling werden auf Grund der früher einsetzenden Produktion von vielen Fischarten die Flachwasserbereiche aufgesucht. Fischarten die hauptsächlich bzw. regelmäßig pflanzliche Nahrung aufnehmen (Amur, Rotfeder, Rotauge) sind fast immer an verkrauteten Stellen zu finden.

Strukturen durch Pflanzenbewuchs sind für fast alle Fischarten, besonders aber für Jungfische von sehr großer Bedeutung, da sie Schutz vor Räubern und gute Ernahrungsbedingungen bieten.

Kurz vor den jeweiligen Laichzeiten kann bei fast allen Fischarten eine erhöhte Aktivität festgestellt werden. Häufig werden dann Bereiche aufgesucht in denen man diese Fische sonst nicht beobachten kann. Von einigen Fischarten (z. B. Seeforellen) werden auch kurze Laichwanderungen zu den Laichplätzen unternommen.

3 KIEMENNETZBEFISCHUNGEN

Ein Kiemennetz besteht aus einem Netzblatt, das sich aus vielen einzelnen gleich großen Maschen zusammensetzt, einer schwimmenden Oberleine und einer sinkenden Bleileine. Es wird an einer geeigneten Stelle eines meist stehenden Gewässers gesetzt und dort, je nach Gewässerbeschaffenheit und Fischdichte, eine gewisse Zeit (häufig über Nacht) exponiert. Da das Netz während dieser Zeit an Ort und Stelle bleibt ist man auf die Aktivität der Fische angewiesen.

In flachen Gewässern, sowie in den Uferbereichen der tieferen Seen werden Kiemennetze so gesetzt, dass die Bleileine direkt am Grund aufliegt. Im Freiwasser tieferer Seen werden sie dagegen mit Hilfe von Auftriebskörpern, zwischen zwei verankerten Bojen, in einer bestimmten Tiefe „aufgehängt“.

In den meisten Voralpen- und Alpenseen werden Kiemennetze zur erwerbsmäßigen Fischerei verwendet, wobei in erster Linie Coregonen gefangen werden. Die Maschenweite sollte dabei so gewählt werden, dass es den Fischen ermöglicht wird zumindest einmal

3.1 Faktoren die den Fangserfolg bestimmen

- **Fischart**

 Es können territoriale Fischarten die nur geringe Ortsveränderungen durchführen (z. B. Hecht) den schwarmbildenden, die sich nahezu ständig in Bewegung befinden (z. B. Coregonen) gegenübergestellt werden. Dazwischen gibt es so gut wie alle Übergänge. Daraus ergibt sich, dass eine Befischung von wenig aktiven Fischarten mit Kiemennetzen nur selten befriedigende Ergebnisse bringt.

- **Morphologie der Fischart**

 Grundsätzlich können sich Fische auf drei verschiedene Arten im Netz verfangen:

 a) Der Fisch passiert mit dem Kiemendeckel gerade noch die Masche, wodurch zumindest eine Masche des Netzes zwischen Kiemendeckel und Kiemenbogen zu liegen kommt. Der Fisch kann daher weder nach vor noch zurück (Abb. 2).

 ![Abb. 2: Reinanke die mit dem Kiemendeckel eine Masche passiert hat. Die Masche des Kiemennetzes ist als schwarzer vertikaler Strich eingezeichnet.](image1.png)

 b) Der Fisch wird am größten Körperumfang „gemascht“. Dieser befindet sich bei vielen Fischarten am vorderen Ansatzpunkt der Rückenflosse (Abb. 3).

 ![Abb. 3: Coregone die am größten Körperumfang „gemascht“ wurde. Die Masche des Kiemennetzes ist als schwarzer vertikaler Strich eingezeichnet.](image2.png)
c) Der Fisch verfängt sich mit den Zähnen (z.B. Hecht, Zander) oder mit anderen Strukturen (Rückenflosse bei Karpfen) im Kiemennetz (Abb. 4).

Abb. 4: Hecht der sich mit den Zähnen im Netz verfangen hat. Die Maschen des Kiemennetzes sind als schwarze Striche eingezeichnet.

Aus den Punkten a) bis c) ergibt sich, dass morphologische Unterschiede zwischen verschiedenen Fischarten, die der gleichen Längenklasse angehören, unterschiedliche Fangergebnisse bedingen. Bei langgestreckten schlanken Formen (Coregonen, Salmoniden, Lauben), die einer Längenklasse angehören, ist die Spannweite der Maschenweiten die einen Fang ermöglichen, im Vergleich zu hochrückigen Fischarten der gleichen Längenklasse, geringer (Abb. 5).

- **Aktivität der Fischart**
 Die Aktivität verschiedener Fischarten wird durch deren spezifische Verhaltensweisen, durch kurzfristige Umwelteinflüsse und durch saisonale Effekte bestimmt. Da es sich beim Einsatz von Kiemennetzen um eine passive Befischungsmethode handelt wird der Fangfolg also in hohem Maße von der Schwimmaktivität der Fische bestimmt.

- **Diurnalität**
 Die Verhaltensweisen vieler Fischarten ändern sich im Tagesverlauf. Grundsätzlich können tagaktive und nachtaktive Arten unterschieden werden, wobei bei vielen die höchste Aktivität in den Dämmerungsphasen zu beobachten ist.

- **Saisonalität**
 Besonders bei wärmeliebenden Fischarten (viele Cypriniden) ändert sich die Aktivität mit der Wassertemperatur und somit auch saisonal. Während der Laichzeit ist die Aktivität bei den meisten Fischarten etwas erhöht, z. T. werden auch kurze Laichwanderungen durchgeführt. Durch den Zuwachs der Fische in der Produktionsphase kann es sein, dass Fische erst im
Laufe des Sommers in eine Maschenweite „hineinwachsen“. Es muss auch beachtet werden, dass man zu bestimmten Jahreszeiten mit einer bestimmten Maschenweite eher die Vorwüchsiger fängt, wohingegen man einige Monate später eher die schlechtwüchsigen Fische fängt.

- **Maschenweite**
 Sie bestimmt welche Fischarten und welche Größenklassen vorwiegend gefangen werden und muss daher der jeweiligen Fragestellung angepasst werden. Dabei muss beachtet werden, dass Kiemennetze sehr selektiv bestimmte Größenklassen fangen.

- **Fadenstärke**
 Besonders bei optisch orientierten Fischarten (z. B. Reinanken) wird der Fangerfolg entscheidend von der Fadenstärke des Netzzarnes bestimmt. Engmaschige Netze fangen bei gleicher Fadenstärke weniger als weitmaschige, was sich durch die höhere Anzahl der Maschen pro Fläche erklären lässt.

- **Netzblattmaterial**

- **Gewässertrübe, Algenbiomasse und Expositionszeit**
 Besonders bei optisch orientierten Fischarten bestimmt die Sichttiefe eines Gewässers entscheidend den Fangerfolg. In klaren Seen oder Teichen bringen nur Befischungen während der Nachtstunden nennenswerte Fangerfolge.
 Bei Kiemennetzen die länger exponiert werden legen sich Algen und andere Schwebstoffe am Netzblatt an und setzen dadurch dessen Fängigkeit sehr stark herab. Fische die sich im Kiemennetz verfangen haben, setzen die Fängigkeit ebenfalls herab.

- **Lichtintensität**
4 FISCHPARASITEN

4.1 Protozoa (Einzeller)

Es handelt sich meist um mikroskopisch kleine Organismen die nur aus einer Zelle bestehen.

4.1.1 Ichthyophthirius multifiliis

Er ist ein relativ großer Haut- und Kiemenparasit der praktisch auf allen Süßwasserfischen vorkommen kann. Ausgewachsene Exemplare sind schon mit freiem Auge als weiße Punkte auf der Hautoberfläche zu erkennen.

Entwicklungszyklus:

4.2 **Trematoda (Saugwürmer)**

- **Monogenea (Hakensaugwürmer)**

 4.2.1 *Gyrodactylus sp.*

- **Dactylogyrus sp.**
 Max. ca. 1 mm langer Außenparasit der meist auf den Kiemen von Fischen zu finden ist. Die optimale Temperatur für seine Vermehrung liegt zwischen 24 und 28° C und daher ist ein Massenbefall der Fische nur im Sommer möglich. Der Befall führt zu einer mechanischen Schädigung der Kiemenfilamente die bei sehr starkem Befall zum Erstickungstod der Fische führen kann. Die Entwicklung erfolgt über Eier und ein bewimpertes, bewegliches Larvenstadium (Oncomiracidium).

- **Digenea (Saugnapfwürmer)**

 4.2.3 *Diplostomum sp.*
 Aus den befruchteten Eiern, die durch den Kot eines Wasservogels (= Endwirt; in erster Linie Möwe) in das Wasser gelangen, schlüpft eine freischwimmende Wimperlarve (Miracidium). Diese bohrt sich nach kurzer Zeit durch die Körperwand einer Wasserschnecke (= Erster Zwischenwirt; z.B. Spitzschlammschnecke) bis in deren Leber ein. Dort wächst die Wimperlarve zu einer Sporocyste heran, in welcher binnen 3 Wochen durch Jungfernzüchtung sogenannte Redien und Tochterredien entstehen. Aus den Redien
entwickeln sich Cercarien, welche die Schnecke verlassen und freischwimmend einen Fisch (= Zweiter Zwischenwirt) aufsuchen. Das Eindringen in den Fisch erfolgt durch die Körperoberfläche, vor allem aber durch das Auge, wo sie sich dann meist in der Linse festsetzen. Bei starkem Befall kommt es zu einer Linsentrübung (Erreger des „Wurmstar“) und zu Erblindung. Wird der Fisch wieder von einem Endwirt (Möwe) gefressen, so entwickelt sich wieder der geschlechtsreife Parasit.

4.2.4 **Tylodelphis sp.**
Die Entwicklung verläuft ähnlich wie bei *Diplostomum sp.*, jedoch setzt er sich im Glaskörper des Auges fest. Als Endwirt fungiert der Haubentaucher.

4.2.5 **Asymphylodora tincae**
Tritt im Darm von Schleien oft in sehr großen Mengen auf, wobei jedoch nur geringe Schädigungen durch Nahrungsentzug verursacht werden.

4.3 **Cestoda (Bandwürmer)**

4.3.1 **Proteocephalus exigus**
Entwicklungszyklus:
Als Endwirt fungiert der Fisch (Reinanke). Dieser gibt die Eier von *P. exiguus* mit dem Kot in das Wasser ab, wo sich eine bewimperte, freischwimmende Larve (Coracoid) entwickelt. Diese wird von einem Zwischenwirt (häufig einem Copepoden (Hüpferling) evtl. auch Gammariden (Bachflohkrebs) oder Tubificiden) aufgenommen. Dort entwickelt sich das zweite Larvenstadium (Procercoïd). Wenn ein Endwirt (Fisch) den Zwischenwirt frisst, bilden sich im Darm des Endwirts wieder die geschlechtsreifen Bandwürmer aus.

Schädigung:

4.3.2 *Triaenophorus nodulosus*
Charakteristisch für *T. nodulosus* sind vier kleine Haken am Vorderende, die je drei nach hinten gerichtete Dornen besitzen (REICHENBACH-KLINKE 1980). Er erreicht eine Länge von 15 bis 30 cm und parasitiert vorwiegend im Darm von Hechten und anderen Raubfischen.

Entwicklungszyklus:

Schädigung:

4.3.3 *Caryophyllaeus sp.*

Entwicklungszyklus:

Schädigung:

Bei sehr starkem Befall kann es zu Abmagerung und Wachstumshemmung kommen.

4.3.4 *Ligula intestinalis*

L. intestinalis parasitiert als Plerocercoid (= zweites Larvenstadium) in der Leibeshöhle von Fischen und erreichen dort eine Länge von bis zu 60 cm und eine Breite von bis zu 1,5 cm. Der weiße Körper ist segmentiert und zeigt in der Mitte eine Mittelrinne. Am Vorderende liegen zwei Sauggruben (AMLACHER 1992).

Entwicklungszyklus:

Mit dem Kot des Vogels (= Endwirt; Möwe oder Haubentaucher) gelangen die Eier in das Gewässer. Aus dem Ei schlüpft eine bewimperte Larve (Coracidium), welche von Copepoden (= Erster Zwischenwirt) gefressen wird. In dessen Leibeshöhle entwickelt sich der Wurm zum Procercoid. Wird der Zooplankter von einem Fisch (= Zweiter Zwischenwirt; Brachse, Rotauge, Rotfeder) gefressen, so wandert er in dessen Leibeshöhle und wächst zum Plerocercoid (= Zweites Larvenstadium). Wenn ein Wasservogel den befallenen Fisch frisst entwickelt sich in dessen Darm wieder der geschlechtsreife Wurm.

Schädigung:

4.4 **Nematoda (Fadenwürmer)**

4.4.1 **Camallanus lacustris**

C. lacustris ist 1-2 cm lang und im Darm und in den Pylorusanhängen, besonders bei Flussbarschen, zu finden. Er ist charakteristisch rot gefärbt und hat eine kräftige Kopfkapsel ausgebildet.

Entwicklungszyklus:

Das Larvenstadium 1 entwickelt sich bereits in den weiblichen Nematoden. Diese Larven gelangen in das Wasser und werden von einem Copepoden (= Zwischenwirt) gefressen. In diesem entwickeln sich die Larvenstadien 2 und 3. Wird der Hüpferring z. B. von einem Rotaug gefressen, so wird die weitere Larvenentwicklung so lange unterbrochen bis dieses von einem Raubfisch (häufig Barsch) gefressen wird. Erst in diesem erfolgt die Entwicklung zum Larvenstadium 4 und schließlich zum geschlechtsreifen Wurm.

Schädigung:

Keine bekannt

4.4.2 **Raphidascaris acus**

Schädigungen

Keine bekannt

4.5 **Acanthocephala (Kratzer)**

Acanthocephala parasitieren ausnahmslos im Darm von Wirbeltieren, wobei die heimischen Arten nur eine Länge von 2-3 cm erreichen. Mit ihrem hakenbesetzten, einzehbaren Rüssel verankern sie sich in der Darmwand des Wirts. Sie haben keinen Darm und nehmen daher die Nahrung über die gesamte Körperoberfläche auf. Sie sind getrenntgeschlechtlich, wobei die Weibchen meist bedeutend größer als die Männchen werden. Die abgegebenen Eier schweben durch ihre längliche Form im Wasser und können so leicht von den Zwischenwirten (Krebstiere oder Insektenlarven) aufgenommen werden. Starker Befall kann,
durch die mit dem Rüssel verursachte Schädigung der Darmwand, zu Abmagerung und evtl. auch zum Tod der Fische führen.

4.5.1 Acanthocephalus lucii
Die Männchen werden bis 7 mm, die Weibchen dagegen 8-21 mm lang. *A. lucii* kommt in Barschen, Hechten, Kaulbarschen, in Schleien und gelegentlich auch noch in einigen anderen Fischarten vor (AMLACHER 1992).

Entwicklungszyklus:

Schädigung:

4.6 Annelida (Ringelwürmer)

4.6.1 Piscicola geometra (Fischegel)
P. geometra kann praktisch auf allen Arten von Süßwasserfischen vorkommen. Er wird max. 5 cm lang und besitzt einen vorderen und einen hinteren Saugnapf. Die Vermehrung erfolgt über Eier die in Kokons z. B. an Wasserpflanzen abgelegt werden. Geschädigt werden nur kleine Fische.

4.7 Crustacea (Krebstiere)
4.7.1 *Argulus foliaceus*

Schädigung

4.7.2 *Ergasilus sieboldi*

Bei dieser Art sind nur die geschlechtsreifen Weibchen parasitisch, Larven und Männchen leben planktisch. Die geschlechtsreifen Weibchen werden ca. 1,3 – 1,7 mm lang. In der Zeit von April bis Oktober tragen die Weibchen zwei längliche „Eipakete“, die ca. 200 Eier enthalten. Das Temperaturoptimum für die Larvenentwicklung liegt bei ca. 25 °C; zu Massenbefall, der zuerst zu starker Abmagerung („Messerrücken“) und schließlich zum Tod führen kann, kommt es daher vor allem in Spätsommer und Herbst (RYDLO 1985).
5 DER WEISSENSEE

Seehöhe: 930 m ü.d.A.
Länge: 11,5 km
mittlere Breite: 572 m
max. Breite: 900 m
Fläche: 6,5 km²
großte Tiefe: 99 m
mittlere Tiefe: 35,1 m
Einzugsgebiet: 46 km²
Wasservolumen: 229.165.045 m³
theoretische Wassererneuerungszeit: 11,0 Jahre

Östlich der Brücke fallen die weißen Seekreidebänke auf, welche durch eingeschwemmte Kalkkörnchen, durch Reste von Schneckenhäusern, aber auch durch biogene Entkalkung entstanden sind und dem Weißensee seinen Namen verleihen. Die Kalkkrystalle im Wasser rufen auch die türkisblaue Färbung hervor.

In Hinblick auf seine Tiefenverhältnisse lässt sich der Weißensee in drei Abschnitte unterteilen (Abb. 6):

Westmulde:
- Gatschacher Becken
 Tiefe: max. 6 m
- Brücke bis Neusacher Mühlbach
 Tiefe: max. 16 m

mittlerer Abschnitt:
- Neusacher Mühlbach bis etwa 1 km östlich vom Ronacherfels
 Tiefe: max. 55 m

östlicher Abschnitt:
- etwa 1 km östlich vom Ronacherfels bis zum Ostende des Sees
 Tiefe: max. 99 m

Abb. 6: Längs- und Querprofil des Weißensees

6 LIMNOLOGISCHE ENTWICKLUNG (KÄRNTNER SEENBERICHT 2000)

Die Ergebnisse der limnologischen Untersuchungen bescheinigen dem meromiktischen Weißensee eine unverändert ausgezeichnete Wasserqualität. Die Gesamtphosphorkonzentrationen des Epilimnions und in 50 m Tiefe waren unverändert niedrig (Tab. 1). Die durchschnittliche Algenbiomasse hat im Vergleich zu 1998 geringfügig zugenommen. Die optische Qualität des Weißensees war mit Sichttiefen zwischen 8,2 und 15 m ausgesprochen gut. Die Sauerstoffkonzentration in 50 m Tiefe ist angestiegen. Die 3 mg/l Sauerstoff-Grenze lag in 70 m Tiefe, eine sauerstofffreie Zone war Anfang September in 80 m entwickelt und lag damit etwas höher als im Vorjahr (95 m). Der Weißensee zählt zu den oligotrophen Gewässern Kärntens.

<table>
<thead>
<tr>
<th>WEISSSENSEE</th>
<th>1997</th>
<th>1998</th>
<th>1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Tiefe</td>
<td>Mittel</td>
<td>Min</td>
</tr>
<tr>
<td>Sichttiefe (m)</td>
<td>4</td>
<td>9,7</td>
<td>7,5</td>
</tr>
<tr>
<td>Temperatur (°C)</td>
<td>0 m</td>
<td>4</td>
<td>6,7</td>
</tr>
<tr>
<td>pH-Wert</td>
<td>1 m</td>
<td>4</td>
<td>8,35</td>
</tr>
<tr>
<td>Leitfähigkeit (µS/cm)</td>
<td>1 m</td>
<td>4</td>
<td>312</td>
</tr>
<tr>
<td>Gesamtphosphor (µg/l)</td>
<td>0 - 6 m</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Gesamtphosphor (µg/l)</td>
<td>50 m</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Orthophosphat-Phosphor (µg/l)</td>
<td>0 - 6 m</td>
<td>3</td>
<td><2</td>
</tr>
<tr>
<td>Nitrat-Stickstoff (µg/l)</td>
<td>0 - 6 m</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>Ammonium-Stickstoff (µg/l)</td>
<td>50 m</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Sauerstoff (mg/l)</td>
<td>50 m</td>
<td>3</td>
<td>1,8</td>
</tr>
<tr>
<td>Phytoplankton (mg/m³)</td>
<td>0 - 6 m</td>
<td>4</td>
<td>523</td>
</tr>
<tr>
<td>Phytoplankton (g/m²)</td>
<td>0 - 30 m</td>
<td>4</td>
<td>12,6</td>
</tr>
</tbody>
</table>
7 ENTWICKLUNG DER FISCHEREI

Die erste urkundliche Erwähnung in fischereilicher Hinsicht stammt aus dem Jahre 1485. Paolo SANTONINO, Sekretär des Bischofs von Caorle, schrieb anlässlich eines Besuches in Oberkärnten in sein Tagebuch: „... DER SEE SELBST ERFREUT SICH KEINER ANDEREN FISCHGATTUNG ALS DER FORELLEN, ABER DIESE SIND EBENSO GUT WIE SCHÖN,...“

Im Jahre 1883 veröffentlichte HARTMANN eine Abhandlung mit dem Titel „DAS THAL DES WEISSENSEES“ in der er 7 Fischarten beschrieb.

Karpfenartige:
Rotfeder (*Scardinius erythrophthalmus*)
Aitel (*Leuciscus cephalus*)
Schleie (*Tinca tinca*)
Gründling (*Gobio gobio*)
Elritze (*Phoxinus phoxinus*)

Salmoniden:
Seeforelle (*Salmo trutta forma lacustris*)
Bachforelle (*Salmo trutta forma fario*)
Lachs (*Salmo salar*)

Außerdem wies er den Edelkrebs (*Astacus astacus*) nach.

Als häufigste Fischarten nannte HARTMANN die Rotfeder, den Gründling, den Aitel aber auch die Seeforelle. Die Seeforelle wurde auf Grund ihrer charakteristischen Färbung, die laut HARTMANN nur im Weißensee ausgebildet wurde, auch Goldforelle genannt. Als zweite Salmonidenart beschrieb er die Lachsforelle, welche Gewichte von über 15 kg erreichte und nach HARTMANN Ähnlichkeiten mit einer stationären Form des atlantischen Binnenlachses aufwies.

Literaturrecherchen von HONSIG-ERLENBURG lassen darauf schließen, dass auch der Seesaibling zum Urbestand des Weißensees zu zählen ist.

Der bis jetzt kaum beachtete Kaulbarsch wurde vermutlich um 1990 in den See eingeschleppt. Wahrscheinlich muss auch diese Fischart in den nächsten Jahren zu den häufigen Fischarten gezählt werden.

Lachsartige (Salmonidae)
Erkennungsmerkmale: **Fettflosse** zwischen Rückenflosse und Afterflosse. Rückenflosse mit max. 16 Flossenstrahlen.

8.1 Seeforelle (*Salmo trutta forma lacustris*)

Erstbesatz: autochthon

Besatz: jährlich seit den 1970-er Jahren

Um möglichst schnell wieder einen Seeforellenbestand aufzubauen, werden seit 1998 jährlich zwischen 1000 und 6500 Stk. zwei- bzw. dreisömmrige Seeforellen mit einer Länge von 30 - 55 cm in den Weißensee eingesetzt. Solche Besatzmaßnahmen können nur

Durch die Fischuntersuchung in den letzten 3 Jahren konnte belegt werden, dass Seeforellen z. T. auch wieder die ehemaligen Laichplätze, die Brunnen, zum Ablaichen aufsuchen. Da jedoch Coregonen zur gleichen Zeit die gleichen Laichplätze nutzen und sich
diese während dieser Zeit hauptsächlich vom abgegebenen Rogen ernähren, dürfte der größte Teil des Seeforellenlaichs verloren gehen. Daher dürfte auch das unausgewogene Verhältnis zwischen Seeforellen und Reinanken den Wiederaufbau eines guten Seeforellenbestandes behindern.

Durch das Abstreifen der Mutterfische konnten im Jahr 2002 etwa 30.000 Stk. Seeforellen erbrütet werden. Die Qualität der Jungfische kann als hervorragend bezeichnet werden und sie sollten daher als Basis für weitere Bewirtschaftungsmaßnahmen angesehen werden, durch die ein Aufbau einer sich selbst erhaltenden Seeforellenpopulation realistisch erscheint. Dabei ist es entscheidend, dass die Seeforellen unter optimalen Bedingungen aufgezogen werden und als gesunde, konditionsstarke Besatzfische mit voll ausgebildeten Flossen besetzt werden. Wo die Aufzucht stattfindet ist sekundär solange das Vertrauen zur Fischzuchtanlage vorhanden ist.

Besatz und Ausfang seit 1990

Tab. 2: Seeforelle: Besatz und Ausfang (Fanglisten) pro Jahr. ∗ = keine Angaben welche Forellenart

<table>
<thead>
<tr>
<th>Jahr</th>
<th>vorgestreckt bzw. 1-sömmrig</th>
<th>2-sömmrig</th>
<th>3-sömmrig</th>
<th>Ausfang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stk.</td>
<td>kg Fischzucht</td>
<td>Stk.</td>
<td>kg Fischzucht</td>
</tr>
<tr>
<td>1990</td>
<td>10.000</td>
<td>25 Jobst</td>
<td>90 Mayr</td>
<td>800 Glück</td>
</tr>
<tr>
<td>1991</td>
<td>7 Jobst∗</td>
<td>Jobst∗</td>
<td>800 Glück</td>
<td>1992</td>
</tr>
<tr>
<td>1992</td>
<td>10.000</td>
<td>Glück</td>
<td>60 Jobst∗</td>
<td>1993</td>
</tr>
<tr>
<td>1993</td>
<td>10.000</td>
<td>Glück</td>
<td>500 Glück</td>
<td>1994</td>
</tr>
<tr>
<td>1994</td>
<td>100.000</td>
<td>Olsacher A5D</td>
<td>1995</td>
<td>11</td>
</tr>
<tr>
<td>1995</td>
<td>min. 100.000</td>
<td>A5D</td>
<td>1996</td>
<td>13</td>
</tr>
<tr>
<td>1996</td>
<td>min. 70.000</td>
<td>A5D Steiner</td>
<td>1997</td>
<td>21</td>
</tr>
<tr>
<td>1997</td>
<td>min. 70.000</td>
<td>A5D</td>
<td>1998</td>
<td>10</td>
</tr>
<tr>
<td>1998</td>
<td>min. 50.000</td>
<td>A5D Steiner</td>
<td>1999</td>
<td>126</td>
</tr>
<tr>
<td>1999</td>
<td>min. 60.000</td>
<td>A5D</td>
<td>2000</td>
<td>55</td>
</tr>
<tr>
<td>2000</td>
<td>min. 70.000</td>
<td>A5D</td>
<td>2001</td>
<td>39</td>
</tr>
<tr>
<td>2001</td>
<td>min. 30.000</td>
<td>A5D</td>
<td>900 400 Steiner</td>
<td>400 400 Steiner</td>
</tr>
</tbody>
</table>

Fanglistenauswertung 2000 u. 2001

Tab. 3: Seeforelle: Jahresausfang durch Angelfischer in den Jahren 2000 und 2001

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Gesamtausfang [Ind.]</th>
<th>Gesamtausfang [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>55 152</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>39 125</td>
<td></td>
</tr>
</tbody>
</table>

8.2 **Bachforelle (Salmo trutta forma fario)**

Bestimmungsmerkmale

- **Körperform:** wie Seeforelle
- **Färbung:** an der Flanke hell gesäumte **rote Punkte mit heller Umrandung**
 - Fettflosse am Rand rötlich
- **Pflugscharbein:** doppelreihig bezahnt
- **Lebensraum:** kühle, sauerstoffreiche Fließgewässer und Gebirgsseen
- **Verbreitung:** Mühlbach, Praditzbach
- **Laichzeit:** keine Daten (Vermutlich November bis Dezember)
- **Laichplätze:** ?; auf Kies
- **Reproduktionserfolg:** ?
- **Ernährung:** keine Daten
- **Erstbesatz:** autochthon
- **Besatz:** kein Besatz

Bachforelle und Seeforelle stellen zwei Ökotypen der gleichen Art dar. Aus fischökologischer Sicht ist die Bachforelle für den Weißensee unbedeutend.

8.3 **Seesaibling (Salvelinus alpinus salvelinus)**

Bestimmungsmerkmale

- **Körperform:** torpedoförmig
- **Maulform:** weite Mundspalte, reicht bis zum Hinterrand der Augen
- **Färbung:** Körper blaugrün bis braun mit hellen Flecken, Bauch weißlich bis gelborange
 - **Vorderrand der paarigen Flossen** und der **Afterflosse** mit **weißem Saum**
- **Pflugscharbein:** **nur die Platte ist bezahnt**
- **Lebensraum:** im Freiwasser und im Uferbereich; in größeren Tiefen
- **Laichzeit:** November
- **Laichplätze:** ?; auf Kies
- **Reproduktionserfolg:** sehr gering bis keiner
- **Ernährung:** Jungsaiblinge: Zooplankton, Zoobenthos
 - **Große Seesaiblinge:** Zoobenthos, Fisch
- **Erstbesatz:** autochthon (HONSIG-ERLENBURG)

Besatz und Ausfang seit 1990

Tab. 4: Seesaibling: Besatz und Ausfang (Fanglisten) pro Jahr. * = Aus den Unterlagen geht nicht hervor ob es sich bei den 3-sömrijigen Besatzfischen um See- oder Bachsaiblinge handelte.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>vorgestreckt bis 1-sömrig Stk.</th>
<th>1-sömrig Fischzucht Stk. kg</th>
<th>20-25 cm Fischzucht Stk. kg</th>
<th>3-sömrig Fischzucht Stk. kg</th>
<th>Ausfang Jahr [Stk.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>30.000</td>
<td>85</td>
<td>200</td>
<td>800</td>
<td>1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>1991</td>
<td>15.000</td>
<td>175</td>
<td>47</td>
<td>800</td>
<td>1992</td>
</tr>
<tr>
<td></td>
<td>10.000</td>
<td></td>
<td></td>
<td></td>
<td>169</td>
</tr>
<tr>
<td>1992</td>
<td>10.000</td>
<td>75</td>
<td></td>
<td></td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>10.000</td>
<td>75</td>
<td></td>
<td></td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>17.000</td>
<td>150</td>
<td></td>
<td></td>
<td>1994</td>
</tr>
<tr>
<td></td>
<td>15.000</td>
<td></td>
<td></td>
<td></td>
<td>136*</td>
</tr>
<tr>
<td></td>
<td>5.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min. 8.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>15.000</td>
<td></td>
<td></td>
<td></td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>min. 30.000</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1995</td>
<td>min. 15.000</td>
<td></td>
<td></td>
<td></td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td>38.000</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>1996</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1997</td>
</tr>
<tr>
<td>1997</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1998</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1999</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2001</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fanglistenauswertung 2000 u. 2001

Im Jahr 2000 und 2001 wurden insgesamt nur vier bzw. drei Seesaiblinge in die Fanglisten eingetragen. Der Seesablingsbestand im Weißensee ist daher derzeit unbedeutend.

Reinanken (Coregonidae)

Erkennungsmerkmale: **Fettflosse** zwischen Rückenflosse und Afterflosse

größere Schuppen als bei Salmoniden

Die Pupille stellt einen nach hinten offenen Winkel dar.

8.4 Reinanke (*Coregonus lavaretus*)

Bestimmungsmerkmale

Körperform: lang gestreckt, seitlich zusammen-

gedrückt, **tief eingeschnittene Schwanzflosse**

Maulform: **Mundspalte eng**, reicht max. bis zum Augenvorderrand

Färbung: Rücken oliv bis bräunlich, Flanken silbrig, Flossen meist berußt

Lebensraum: Freiwasser und Uferbereiche

Von Ende Mai bis November nur in Tiefen unterhalb des Epilimnions
Laichzeit: Ende November bis ? (vermutlich Ende Dezember)
Laichplätze: Uferbereiche auf Kies (Brunnen), möglicherweise auch im Freiwasser
Reproduktionserfolg: sehr gut
Ernährung: Junge und kleinwüchsige Coregonen: Zooplankton, z. T. Zuckmückenpuppen und -larven
großwüchsige Coregonen: Zoobenthos aller Art, z. T. Fisch, selten Zooplankton

Coregonen treten zur Coregonen- und Seeforellenlaichzeit im Dezember massiv als Laichräuber in Erscheinung!

Erstbesatz: 1934
Besatz: jährlich

Als Angelfisch wurde die Reinanke erst Mitte der 1980-er Jahre populär, wobei bis zu Beginn der 1990-er Jahre hauptsächlich große Coregonen mit der Angel gefangen wurden. Das Mindestmaß von 40 cm war daher in dieser Phase gut gewählt. Durch Besatzmaßnahmen gelangten aber auch Reinanken in den See die auf Grund ihrer schlechten Wachstumsleistung nicht bzw. erst mit höherem Alter eine Länge von 40 cm erreichten. Diese Fische wurden zwar von den Angelfischern gefangen, durften aber nicht entnommen werden. Durch die ständig steigende Zahl der Renkenfischer stieg der Befischungsdruck auf
großwüchsige Reinanken (> 40 cm) kontinuierlich an, wohingegen kleinwüchsige Fische vollkommen geschont wurden. Durch den sehr guten Reproduktionserfolg führte dies folglich zu einer sehr hohen Fischdichte, wodurch auf Grund der sich verschlechternden Nahrungssituation die Wachstumsleistung und die Konditionsfaktoren allgemein stark abnahmen.

Da Reinanken nicht zum Urbestand des Weißensees zählen ist es unzweckmäßig die einzelnen Formen auftrennen zu wollen. Es ist primär wichtig ein Bewirtschaftungsziel für den derzeit wichtigsten Wirtschaftsfisch des Weißensees zu erstellen. Da der See auch in Zukunft hauptsächlich von Angelfischern genutzt werden wird ist es naheliegend auf die Wünsche dieser Gruppe einzugehen. Es kann daher nur das Ziel sein großwüchsige Coregonen zu fördern. Das kann aber nur durch eine parallel verlaufende Verbesserung der Nahrungssituation erreicht werden, was wiederum nur durch eine Dezimierung des Reinankenbestandes zu erreichen ist.
Die Bewirtschaftung sollte daher in Zukunft folgendermaßen erfolgen:

- **Besatz mit großwüchsigen Coregonen**

 Gutes Besatzmaterial ist zur Zeit sicherlich aus dem Waldviertel zu beziehen. Es ist jedoch sinnvoller den Laichfischfang selbst durchzuführen, wodurch gewährleistet wird, dass nur das beste Eimaterial zur Aufzucht gelangt. Die Larven sollten für den Besatz zumindest auf eine Größe von 3 - 4 cm vorgestreckt, bzw. als einsömmige Fische mit einer Länge von 10 - 15 cm besetzt werden.

- **Dezimierung des (kleinwüchsigen) Reinankenbestandes**

Besatz und Ausfang seit 1990

Von 1992 bis 1996 nahm der Ausfang von Reinanken kontinuierlich zu, was in erster Linie auf die ständig steigende Anzahl von Angelfischern in diesem Zeitraum zurückzuführen ist. Durch die Reduzierung des Mindestmaßes von 40 cm auf 35 cm stieg der Ausfang im Jahr 2001 um mehr als das doppelte an (Tab. 5).

Tab. 5: Reinanke: Besatz und Ausfang (Fanglisten) pro Jahr

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Besatz</th>
<th>Ausfang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Larven</td>
<td>1-sömmrig</td>
</tr>
<tr>
<td>1990</td>
<td>Stk. Fischzucht</td>
<td>kg Fischzucht</td>
</tr>
<tr>
<td>1991</td>
<td>200</td>
<td>Kainz</td>
</tr>
<tr>
<td>1992</td>
<td>350</td>
<td>Kainz</td>
</tr>
<tr>
<td>1993</td>
<td>1.000.000 Hochleitner</td>
<td>100</td>
</tr>
<tr>
<td>1994</td>
<td>300</td>
<td>Kainz</td>
</tr>
<tr>
<td>1995</td>
<td>2.620.000 Olsacher</td>
<td>1996</td>
</tr>
<tr>
<td>1996</td>
<td>1997</td>
<td>3.088</td>
</tr>
<tr>
<td>1997</td>
<td>1998</td>
<td>3.099</td>
</tr>
<tr>
<td>1998</td>
<td>1999</td>
<td>2.996</td>
</tr>
<tr>
<td>1999</td>
<td>129</td>
<td>Kainz</td>
</tr>
<tr>
<td>2000</td>
<td>300</td>
<td>Kainz</td>
</tr>
<tr>
<td>2001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fanglistenauswertung 2000 und 2001

In der Angelsaison 2000 wurden ca. 3.200 Stk. (ca. 2.200 kg) Reinanken mit einer Totallänge von >= 40 cm gefangen (Tab. 6). In der Angelsaison 2001 wurde das Mindestmaß für Coregonen auf 35 cm herabgesetzt, wobei die Entnahme von Reinanken mit einer Länge von 40 – 50 cm auf ein Individuum pro Tag beschränkt wurde. Diese Regelung sollte bezwecken, dass der Bestand der kleinwüchsigen Coregonen dezimiert wird und gleichzeitig die raschwüchsigen Fische, die mit einer Länge von 40 – 50 cm vermutlich die besten Laichfische darstellen, geschont werden. Der Gesamtausfang hat sich durch diese Maßnahme im Jahr 2001 mehr als verdoppelt und lag bei ca. 8.200 Stk. (ca. 4.000 kg), wobei etwa 75 % der entnommenen Reinanken eine Totallänge von weniger als 40 cm hatten. Der Ausfang von Reinanken über 40 cm hat sich dagegen im Vergleich zum Jahr 2000 um ca. 1.000 Stk. verringert. Die gesetzte Maßnahme hat sich daher für das Jahr 2001 als sehr effektiv erwiesen, was in erster Linie daran lag, dass die Angelfischer relativ schnell drei maßige Reinanken pro Tag gefangen haben und daher von diesen nicht weiter auf größere Coregonen gefischt wurde. Es bleibt jedoch abzuwarten wie sich die Ausfänge in den nächsten Jahren entwickeln und wie sich dieser massive Eingriff auf den Reproduktionserfolg der Reinanken auswirkt.

In der Angelsaison 2000 (Mindestmaß = 40 cm) lag der größte Befischungsdruck durch die Angelfischer bei Fischen zwischen 40 und 43 cm (Abb. 8). Im Jahr 2001 (Mindestmaß = 35 cm) wurden am häufigsten Reinanken mit einer Totallänge von 37 bis 39 cm gefangen. Einerseits dürfte ein Teil dieser Fische eine Größe von 40 cm nicht oder erst mit einem höheren Alter erreichen, andererseits war unter diesen Fischen aber sicherlich auch ein großer Anteil von jungen raschwüchsigen Reinanken. Auf alle Fälle erreicht zumindest der Großteil der Weißensecoregonen eine Länge von zumindest 38 cm. Coregonen mit einer Länge von mehr als 50 cm wurden sowohl im Jahr 2000 als auch im Jahr 2001 nur in geringen Mengen gefangen. Das ist vermutlich auf den sehr hohen Befischungsdruck, der auf großwüchsige Reinanken vor der Angelsaison 2001 durch die Angelfischer ausgeübt wurde, zurückzuführen.

Tab. 6: Reinanke: Jahresausfang durch Angelfischer in den Jahren 2000 und 2001

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Gesamtausfang</th>
<th>< 40 cm</th>
<th>>= 40 - < 50 cm</th>
<th>>= 50 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>3166 2172</td>
<td>0</td>
<td>2947 1840</td>
<td>219 332</td>
</tr>
<tr>
<td>2001</td>
<td>8206 4006</td>
<td>6035 2472</td>
<td>1983 1271</td>
<td>188 263</td>
</tr>
</tbody>
</table>

In der Angelsaison 2000 (Mindestmaß = 40 cm) lag der größte Befischungsdruck durch die Angelfischer bei Fischen zwischen 40 und 43 cm (Abb. 8). Im Jahr 2001 (Mindestmaß = 35 cm) wurden am häufigsten Reinanken mit einer Totallänge von 37 bis 39 cm gefangen. Einerseits dürfte ein Teil dieser Fische eine Größe von 40 cm nicht oder erst mit einem höheren Alter erreichen, andererseits war unter diesen Fischen aber sicherlich auch ein großer Anteil von jungen raschwüchsigen Reinanken. Auf alle Fälle erreicht zumindest der Großteil der Weißensecoregonen eine Länge von zumindest 38 cm. Coregonen mit einer Länge von mehr als 50 cm wurden sowohl im Jahr 2000 als auch im Jahr 2001 nur in geringen Mengen gefangen. Das ist vermutlich auf den sehr hohen Befischungsdruck, der auf großwüchsige Reinanken vor der Angelsaison 2001 durch die Angelfischer ausgeübt wurde, zurückzuführen.

Hechte (Esocidae)

8.5 **Hecht (Esox lucius)**

Bestimmungsmerkmale

Körperform: langgestreckt, seitlich wenig zusammen gedrückt
Maulform: flache, *entschnabelförmige Schnauze*,
weite Mundspalte, **starke Bezahnung**

Flossenform: Rückenflosse kurz und weit nach hinten verlagert, gegenüber der ebenfalls kurzen Afterflosse

Färbung: gelbgrün bis olivgrün mit weißem Bauch, Körper mit dunklen Querbinden oder marmoriert.

Lebensraum: Bevorzugt grundsätzlich Strukturen aller Art (Wasserpflanzen, Totholz) als Standplatz sowie klares Wasser; besiedelt aber auch das Freiwasser bis in Tiefen von 20 m

Laichzeit: kurz nach Eisbruch (Ende März bis Mitte April)

Laichplätze: eher flache Bereiche bis ca. 5 m Tiefe mit Krautbewuchs

Die Eier sind klebrig und haften an den Wasserpflanzen

Reproduktionserfolg: sehr gut

Ernährung:
- Junge Hechte: Fische und Zoobenthos aller Art; Flusskrebse
- Große Hechte: hauptsächlich Fische, z. T. Flusskrebse

Erstbesatz: um 1950

Besatz: zuletzt 1986

Ausfänge (Fanglisten) seit 1991

Hechte wurden das letzte Mal im Jahr 1986 besetzt. In den letzten zehn Jahren lag der Ausfang durch die Angelfischer jeweils zwischen ca. 600 und 900 Stk. (Tab. 7). Im Jahr 1999 wurde das Mindestmaß für Hechte aufgehoben, wodurch sich der Ausfang jedoch nicht nennenswert erhöhte.

Tab. 7: Hecht: Ausfang (Fanglisten) pro Jahr

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausfang [Stk]</td>
<td>943</td>
<td>897</td>
<td>774</td>
<td>900</td>
<td>668</td>
<td>696</td>
<td>766</td>
<td>577</td>
<td>697</td>
<td>815</td>
<td>710</td>
</tr>
</tbody>
</table>

36
Fanglistenauswertung

Tab. 8: Hecht: Jahresausfang durch Angelfischer in den Jahren 2000 und 2001

<table>
<thead>
<tr>
<th></th>
<th>Gesamtausfang [Ind.]</th>
<th>< 70 cm [kg]</th>
<th>>= 70 cm [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>815</td>
<td>1194</td>
<td>695 747</td>
</tr>
<tr>
<td>2001</td>
<td>710</td>
<td>1219</td>
<td>561 620 149 599</td>
</tr>
</tbody>
</table>

Barschartige (Percidae)

Erkennungsmerkmale: Rückenflosse geteilt, vorderer Teil mit Stachelstrahlen
Kammschuppen
Bauchflossen brustständig
Schwimmblase ohne Schwimmblasengang

8.6 Flussbarsch (*Perca fluviatilis*)

Bestimmungsmerkmale

Körperform: Körper gedrungen, meist hochrückig, stumpfe Schnauze
Maulform: endständig mit weiter Maulspalte
Schuppen: kleine Kammschuppen
Kiemendeckel: mit spitzem Dorn
Flossenform: Rückenflosse geteilt
Färbung: Rückenflosse mit schwarzem Fleck am Hinterrand; grünlichsilberne bis graublaue Färbung mit helleren Flanken und 6 - 9 dunkleren Querbinden; Bauchflossen und Afterflosse rötlich marmoriert.

Lebensraum: Besiedelt vor allem die Uferbereiche, dringt jedoch bis 20 m Tiefe vor.
Der Freiwasserkörper wird von größeren Flussbarschen nicht besiedelt.

Laichzeit: Mitte April bis Anfang Mai
Laichplätze: Strukturen (Pflanzenbewuchs, Totholz) bis ca. 5 m Tiefe
Der Laich wird als Gallertband auf die Strukturen „aufgehängt“

Reproduktionserfolg: sehr gut
Ernährung: Junge Flussbarsche: Zooplankton und Zoobenthos aller Art; Fischlarven
Große Flussbarsche: Fisch, Zoobenthos aller Art, Flusskrebse.

Zur Coregonen- und Seeforellenlaichzeit treten Flussbarsche als Laichräuber in Erscheinung!

Erstbesatz: um 1950
Besatz: keiner

Der Barschbestand kann derzeit als hoch bewertet werden. Es gibt, abgesehen vom Freiwasserbereich, kaum Stellen wo keine Jungbarsche beobachtet werden können. Dieser hohe Bestand dürfte auch der Grund für den sehr geringen Erfolg bei den während der letzten zehn Jahre durchgeführten Besatzmaßnahmen mit vorgestreckten Seeforellen und

Fanglistenaußwertung

Tab. 9: Flussbarsch: Jahresausfang durch Angelfischer im Jahr 2001

<table>
<thead>
<tr>
<th>Gesamtausfang</th>
<th>< 30 cm</th>
<th>>= 30 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ind.]</td>
<td>[kg]</td>
<td>[Ind.]</td>
</tr>
<tr>
<td>2001</td>
<td>413</td>
<td>140</td>
</tr>
</tbody>
</table>

Abb. 10: Längenhäufigkeitsverteilung von Flussbarschen im Jahr 2001
8.7 **Zander (Sander lucioperca)**

Bestimmungsmerkmale

Körperform: gestreckt, spindelförmig mit spitzem Kopf

Maulform: weites, endständiges und gut bezahntes Maul mit langen „Hundszähnen“

Schuppen: Wangen nackt oder nur teilweise beschuppt

Andere Merkmale: kleiner Dorn am Kiemenendeckel, Vorderkiemenendeckel gezähnt

Färbung: Grundfärbung des Rückens, die Seiten grüngrau bis bleigrau, Unterseite matt silberweiß, Rückenflosse grau mit dunklen Punktreihen, Schwanzflosse mit kleinen schwarzen Flecken in Querbinden gereiht, andere Flossen gelbgrau, Jungzander tragen 8 - 10 dunklere Querstreifen auf der oberen Körperhälfte

Lebensraum: ?

Laichzeit: ? (vermutlich April – Mai)

Reproduktionserfolg: sehr gering

Ernährung: Junge Zander: Zooplankton, Zoobenthos, Fisch

Große Zander: Fisch

Länge: bis 120 cm

Erstbesatz: um 1940

Besatz: bis 1995 regelmäßig

Besatz und Ausfang seit 1990

Bis 1995 wurden jährlich Zander besetzt. Die Ausfänge waren seit 1991 aber mehr oder weniger unbedeutend (Tab. 10).
Tab. 10: Zander: Besatz und Ausfang (Fanglisten) pro Jahr

<table>
<thead>
<tr>
<th>Jahr</th>
<th>1-sömmrig</th>
<th>2-sömmrig</th>
<th>3-sömmrig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stk. Fischzucht</td>
<td>Stk. Fischzucht</td>
<td>kg Fischzucht</td>
</tr>
<tr>
<td>1990</td>
<td>1.400 Waldschach</td>
<td>50 Kainz</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>10.000 Kainz</td>
<td>1.400 Waldschach</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>9.000 Kainz</td>
<td>2.000 Waldschach</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>15.000 Kinsky</td>
<td>2.000 Waldschach</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000 Kainz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 Kainz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>20.000 Kinsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ausfang</th>
<th>Jahr</th>
<th>[Stk.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1991</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

8.8 **Kaulbarsch (Gymnocephalus cernuus)**

Bestimmungsmerkmale

- **Körperform:** Körper gedrungen, Kopf stumpf und dick, an der Kopfunterseite runde, flache Gruben
- **Flossenform:** **Rückenflosse ungeteilt**
 - die beiden Stachelstrahlen der Afterflosse sind gleich lang
- **Schuppen:** Seitenlinie unvollständig, reicht nicht bis zur Schwanzflosse
- **Kiemendeckel:** mit langem Dorn, Vordeckel mit kurzen Dornen
- **Färbung:** **Rückenfärbung olivgrün** oder graugrün mit **dunklen Flecken**, Unterseite weißlich bis hellgrün. Brust rötlich, Rückenflosse und Schwanzflosse mit dunklen Fleckenreihen.
- **Lebensraum:** Hauptsächlich in Tiefen zwischen 5 und 15 m, dringt aber bis in Tiefen von ca. 25 m vor. Beobachtungen und Fänge liegen bis jetzt nur aus dem mittleren und östlichen Abschnitt des Weißensees vor.
- **Laichzeit:** ?
- **Reproduktionserfolg:** sehr gut
- **Ernährung:** ?
 - Laichräuber?
Länge: 12-15 cm
Besatz: vermutlich um 1990 eingeschleppt (Als Köderfisch, oder mit einem „Futterfischbesatz“ durch die Agrargemeinschaft)

Karpfenartige (Cyprinidae)

Erkennungsmerkmale: Keine Zähne auf den Kiefern, jedoch zahnartige Gebilde auf den unteren Schlundknochen (**Schlundzähne**), die gegen eine harte, hornige Kauplatte (Karpfenstein) am Schlunndach arbeiten. Kopf unbeschuppt. Rückenflosse immer ungeteilt, keine Fettflosse.

8.9 Aitel (Leuciscus cephalus)

Bestimmungsmerkmale

Körperform	gestreckt, **fast dreh rund**, großer breiter Kopf
Maulform	endständig mit **breiter Mundspalte**, ohne Barteln
Schlundzähne	**zweireihig:** 2.5 - 5.2
Flossenform	**Afterflosse mit konvexem Rand**
Schuppen	große, derbe Schuppen mit **dunkler Umrandung**
Schuppen entlang der Seitenlinie	43 - 47
Flossenstrahlen: Rückenflosse	3 Hartstrahlen, 8 - 9 Weichstrahlen
Afterflosse	3 Hartstrahlen, 7 - 9 Weichstrahlen
Brustflosse	1 Hartstrahl, 15 - 17 Weichstrahlen
Bauchflosse	2 Hartstrahlen, 8 Weichstrahlen
Färbung	Rücken und Kopfoberseite dunkelgrau, Körperseiten mit gelblichem oder hellem Silberglanz, Bauch und Kehle weiß bis gelblich mit Metallglanz,
Rückenflosse und Schwanzflosse dunkelgrau, Brustflossen etwas heller, Bauchflossen und Afterflosse rot

Lebensraum: Hauptsächlich in den Flachwasser- und Uferbereichen im östlichen Abschnitt; phasenweise aber auch in den Freiwasserbereichen; meist an der Oberfläche; im Westteil nur vereinzelt.

Laichzeit: Juni bis Juli (möglicherweise mehrere Laichphasen)

Reproduktionserfolg: sehr gut

Ernährung: sehr abwechslungsreich: Anflug, Zoobenthos, Flusskrebse, Fisch

Länge: bis 70 cm (ca. 3 kg)

Erstbesatz: autochthon

Besatz: keiner

Der kaum vorhandene Befischungsdruck durch die Angelfischer, der gute Reproduktionserfolg und die große Variabilität bei der Nahrungsaufnahme führten beim Aitel zu einem sehr guten Bestand mit sehr ausgewogener Längenklassenverteilung. Auch große Individuen besiedeln die Flachwasserbereiche. Als Nahrungskonkurrent zu anderen Fischarten spielt der Aitel vermutlich nur eine sehr geringe Rolle.

Fanglistenauswertung

Im Jahr 2001 wurden insgesamt 19 Aitel mit einer Länge von 30 - 57 cm in die Fanglisten eingetragen. Die Entnahme war daher im Vergleich zur tatsächlichen Bestandsdichte vernachlässigbar.

8.10 Schleie (*Tinca tinca*)

Bestimmungsmerkmale

Körperform: kräftig gebauter, gedrungener Körper mit hohem Schwanzstiel

Maulform: klein, endständig mit je einem Bartfaden an den Mundwinkeln

Schlundzähne: einreihig: 4-5 - 5

Flossenform: alle Flossen gerundet, Schwanzflosse nur wenig eingebuchtet, Männchen haben größere und kräftigere Bauchflosse

Schuppen: kleine Schuppen unter einer dicken und sehr schleimigen Oberhaut

Färbung: dunkle bis olivgrüne Färbung mit Messingglanz
Lebensraum: Bevorzugt flache warme Bereiche mit Pflanzenbewuchs. Im Sommer nur oberhalb von 8 m (Beginn der Sprunghöhe). In der Abenddämmerung werden auch die Flachwasserbereiche aufgesucht.

Laichzeit: Juni - Juli

Laichplätze: früher Überschwemmungswiesen; heute flache Bereiche mit Pflanzenbewuchs. Eier werden in Portionen auf die Wasserpflanzen abgegeben

Reproduktionserfolg: ?

Ernährung: Zoobenthos

Länge: bis 60 cm (ca. 3 kg)

Erstbesatz: autochthon

Besatz: jährlich

Besatz und Ausfang seit 1990

Die Ausfänge fielen in den letzten Jahren im Vergleich zur tatsächlichen Bestandsdichte sehr mäßig aus und lagen jeweils zwischen ca. 400 und 700 Stk. (Tab. 11).
Tab. 11: Schleie: Besatz und Ausfang (Fangliste) pro Jahr

<table>
<thead>
<tr>
<th>Jahr</th>
<th>2-sömmrig</th>
<th>3-sömmrig</th>
<th>Ausfang</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fischzucht</td>
<td>Fischzucht</td>
<td>Jahr [Stk.]</td>
</tr>
<tr>
<td>1990</td>
<td>300 Kainz</td>
<td>2.500 Waldschach</td>
<td>1991 422</td>
</tr>
<tr>
<td></td>
<td>400 Kainz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>2.500 Waldschach</td>
<td>400 Kainz</td>
<td>1992 693</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>2.200 Waldschach</td>
<td></td>
<td>1993 706</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>1.500 Waldschach</td>
<td>500 Kainz</td>
<td>1994 480</td>
</tr>
<tr>
<td></td>
<td>500 Kinsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>500 Kinsky</td>
<td></td>
<td>1995 427</td>
</tr>
<tr>
<td>1995</td>
<td>700 Kinsky</td>
<td></td>
<td>1996 379</td>
</tr>
<tr>
<td>1996</td>
<td>500 Glück</td>
<td>300 Kinsky</td>
<td>1997 394</td>
</tr>
<tr>
<td>1997</td>
<td>2.500 Waldschach</td>
<td></td>
<td>1998 561</td>
</tr>
<tr>
<td>1998</td>
<td></td>
<td>1.000 Kinsky</td>
<td>1999 684</td>
</tr>
<tr>
<td>1999</td>
<td>1.000 Kinsky</td>
<td></td>
<td>2000 545</td>
</tr>
<tr>
<td>2000</td>
<td>1.000 Kinsky</td>
<td></td>
<td>2001 521</td>
</tr>
</tbody>
</table>

Fanglistenauswertung

<table>
<thead>
<tr>
<th></th>
<th>Gesamtausfang</th>
<th>< 40 cm</th>
<th>>= 40 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Ind] [kg]</td>
<td>[Ind] [kg]</td>
<td>[Ind] [kg]</td>
</tr>
<tr>
<td>2000</td>
<td>545 569</td>
<td>297 219</td>
<td>248 350</td>
</tr>
<tr>
<td>2001</td>
<td>521 504</td>
<td>292 194</td>
<td>229 310</td>
</tr>
</tbody>
</table>
8.11 **Karpfen (Cyprinus carpio)**

Bestimmungsmerkmale

Körperform: Stammform (Schuppenkarpfen) mit gestrecktem, seitlich etwas zusammengedrücktem Körper; Zuchtform (Spiegelkarpfen) hochrückig

Maulform: endständig bis leichtständig, rüsselartig vorstülpbar, 2 kurze und 2 lange Bartfäden an der Oberlippe

Schlundzähne: dreireihig: 1.1.3 – 3.1.1

Flossenform: **Rückenflosse mit langer, Afterflosse mit kurzer Basis**

Schuppen: Stammform (Schuppenkarpfen) vollständig beschuppt

Schuppen entlang der Seitenlinie: 33 - 40

Flossenstrahlen: Rückenflosse: 3 - 4 Hartstrahlen, 15 - 24 Weichstrahlen

Afterflosse: 3 Hartstrahlen, 5 - 6 Weichstrahlen

Brustflosse: 1 Hartstrahl, 15 - 16 Weichstrahlen

Bauchflosse: 2 Hartstrahlen, 8 - 9 Weichstrahlen

Färbung: braungrün bis bräunlich-silbern, Flossen graugrün, bläulich bis rötlich

Lebensraum: wie Schleie

Laichzeit: Ob Karpfen im Weißensee ablaichen ist fraglich. Ende Juni 2002 konnte zumindest ein eindeutiges Laichverhalten bei einigen Karpfen mit
Gewichten zwischen ca. 4 und 8 kg in den flachen Schilfbereichen in Neusach beobachtet werden. Aber auch wenn Karpfen im Weißensee ablaichen sollten, ist es doch sehr unwahrscheinlich, dass eine natürliche Vermehrung stattfinden kann.

Reproduktionserfolg: keiner
Ernährung: Zoobenthos (während der Angelsaison Futtermittel der Angler)
Länge: bis ca. 90 cm (max. 16 kg)
Erstbesatz: 1948
Besatz: jährlich

Besatz und Ausfang seit 1990

Da sich Karpfen im Weissensee nicht vermehren ist der Ausfang durch die Angelfischer direkt von der Menge und der Qualität der Besatzfische, die im Vorjahr besetzt wurden, abhängig. Daher kam es auch zu relativ starken Schwankungen der Ausfangmengen von Jahr zu Jahr (Tab. 13).

Tab. 13: Karpfen: Besatz und Ausfang (Fanglisten) pro Jahr

<table>
<thead>
<tr>
<th>Jahr</th>
<th>1-sömmrig</th>
<th>2-sömmrig</th>
<th>3-sömmrig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg Fischzucht</td>
<td>kg Fischzucht</td>
<td>kg Fischzucht</td>
</tr>
<tr>
<td>1990</td>
<td>2.500 Waldschach</td>
<td>1.000 Kainz</td>
<td>1.500 Kinsky</td>
</tr>
<tr>
<td></td>
<td>1.000 Kainz</td>
<td></td>
<td>500 Kainz</td>
</tr>
<tr>
<td>1991</td>
<td>2.500 Waldschach</td>
<td>1.000 Kainz</td>
<td>1.500 Glück</td>
</tr>
<tr>
<td></td>
<td>1.000 Kainz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>3.000 Waldschach</td>
<td>500 Waldschach (Wildkarpfen)</td>
<td>1.500 Glück</td>
</tr>
<tr>
<td></td>
<td>500 Kainz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>300 Glück</td>
<td>1.000 Glück</td>
<td>1.000 Kinsky</td>
</tr>
<tr>
<td></td>
<td>1.500 Waldschach</td>
<td>500 Waldschach (Wildkarpfen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000 Kainz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>4.036 Kinsky</td>
<td></td>
<td>1.000 Kinsky</td>
</tr>
<tr>
<td>1995</td>
<td>1.500 Kinsky</td>
<td></td>
<td>1.700 Kinsky</td>
</tr>
<tr>
<td>1996</td>
<td>1.500 Kinsky</td>
<td></td>
<td>1.500 Kinsky</td>
</tr>
<tr>
<td>1997</td>
<td>1.500 Kinsky</td>
<td></td>
<td>1.960 Glück</td>
</tr>
<tr>
<td>1998</td>
<td>1.500 Kinsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>1.500 Kinsky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>1.500 Kinsky</td>
<td></td>
<td>2.500 Kinsky</td>
</tr>
<tr>
<td>2001</td>
<td>1.500 Kinsky</td>
<td></td>
<td>3.400 Kinsky</td>
</tr>
</tbody>
</table>
Fanglistenauswertung

Der Gesamtausfang betrug im Jahr 2000 ca. 2.100 Ind. (ca. 5.500 kg), im Jahr 2001 lag er relativ deutlich niedriger (ca. 1.800 Ind., ca. 4.500 kg) (Tab. 14). In beiden Jahren machten die Besatzkarpfen (< 50 cm) etwa zwei drittel des Gesamtausfanges aus.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtausfang</td>
</tr>
<tr>
<td>[Ind.]</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2001</td>
</tr>
</tbody>
</table>

8.12 Rotauge (*Rutilus rutilus*)

Bestimmungsmerkmale

Körperform: spindelförmig bis hochrückig, seitlich abgeflacht (stark umweltbedingt), Bauch zwischen Bauch- und Afterflosse gerundet, nicht gekielt
Maulform: **endständig** bis leicht unterständig, Mundspalte eng, fast waagrecht

Schlundzähne: **einreihig: 5-6 – 5-6**

Flossenform: **Vorderende der Rückenflosse senkrecht über bzw. knapp hinter dem Ansatz der Bauchflosse**, Rückenflosse reicht zurückgelegt bis über die Afterflosse

Schuppen entlang der Seitenlinie: 39 - 48

Flossenstrahlen: Rückenflosse: 3 Hartstrahlen, 9 - 11 Weichstrahlen
 Afterflosse: 3 Hartstrahlen, 9 - 12 Weichstrahlen
 Brustflosse: 1 Hartstrahl, 15 - 17 Weichstrahlen
 Bauchflosse: 2 Hartstrahlen, 8 Weichstrahlen

Färbung: Rücken und Kopfoberseite dunkelgrau mit bläulichem oder grünlichem Ton, Seiten gegen den Bauch zu immer heller werdend, silberglänzend, Bauchflossen und Afterflosse orange- bis blutrot oder messinggelb, Brustflossen hellgrau, Rückenflosse und Schwanzflosse grau mit rötlichem Anflug, Augenkreise rot

Lebensraum: Im Sommer in Flachwasser- und Uferbereichen bis ca. 8 m Tiefe (Beginn der Sprungschicht), in Seerosenfeldern und Schilfgürteln. Wechsel von Uferbereichen in die Freiwasserzone bei größeren Rotaugen in der Abenddämmerung

Laichzeit: Ende April - Anfang Mai

Laichplätze: seichte, bewachsene Stellen im Uferbereich
 Eier sind klebrig und haften an Wasserpflanzen

Reproduktionserfolg: sehr gut

Ernährung: Zooplankton (junge Rotaugen), Zoobenthos, Anflug (Abenddämmerung), Armleuchteralgen und Fadenalgen

Länge: bis ca. 45 cm (max. 1,5 kg)

Erstbesatz: nach 1900

Besatz: sporadisch

50
8.13 Rotfeder (*Scardinius erythrophthalmus*)

Bestimmungsmerkmale

Körperform: gedrungen mehr oder weniger hochrückig, seitlich abgeflacht, **Bauch zwischen Bauch- und Afterflosse einen scharfen Kiel bildend**

Maulform: Mundspalte eng, schräg

Schlundzähne: zweiereihig: 3.5 – 5.3

Flossenform: Vorderende der Rückenflosse deutlich hinter dem Bauchflossenansatz

Schuppen entlang der Seitenlinie: 40 - 45

Flossenstrahlen:
- Rückenflosse: 2 - 3 Hartstrahlen, 8 - 9 (-10) Weichstrahlen
- Afterflosse: 3 Hartstrahlen, 9 - 11 (-12) Weichstrahlen
- Brustflosse: 1 Hartstrahl, 15 - 16 Weichstrahlen
- Bauchflosse: 2 Hartstrahlen, 8 Weichstrahlen

Färbung: Rücken und Kopfoberseite meist braungrün, Seiten glänzend messinggelb, Bauch silbrig weiß, Augenkreis mit Messing- bis Goldglanz, paarige Flossen und Afterflosse rot bis hellrot, unpaarige Flossen grau

Lebensraum: auch große Fische hauptsächlich in den Schilf- und Seerosenbeständen; z. T. auch in ausgedehnten Pflanzenbeständen (Tausendblatt)

Laichzeit: ? (vermutlich Ende April - Anfang Mai)

Laichplätze: seichte, bewachsene Stellen im Uferbereich

Eier sind klebrig und haften an Wasserpflanzen

Reproduktionserfolg: im Westteil gut

Ernährung: Zooplankton, Zoobenthos, Anflug, Wasserpflanzen (Armleuchteralgen, Tausenblatt, Laichkräuter)

Länge: bis ca. 45 cm (max. 1,5 kg)

Erstbesatz: autochthon

Besatz: sporadisch

8.14 **Laube (Alburnus alburnus)**

Bestimmungsmerkmale

Körperform: schlank und langgestreckt, seitlich zusammengedrückt

Maulform: oberständig mit **steil nach oben gerichteter Mundspalte**, Unterkiefer nicht verdickt

Schlundzähne: zweireihig: 2.5 – (4-) 5.2

Schuppen: **durchgehende Seitenlinie, Kiel zwischen Bauchflossen und Afterflosse gänzlich unbeschuppt**

Schuppen entlang der Seitenlinie: 42 - 55

Flossenstrahlen: Rückenflosse: 3 (-4) Hartstrahlen, (7-) 8 - 9 Weichstrahlen

Afterflosse: 3 Hartstrahlen, 17 - 20 Weichstrahlen

Brustflosse: 1 Hartstrahl, 14 - 15 Weichstrahlen

Bauchflosse: 2 Hartstrahlen, (7-) 8 Weichstrahlen

Kiemenreusendornen: lang und dicht stehend

Färbung: Rücken blaugrün, Seiten und Bauch stark silberglänzend, Flossen weißlich, zuweilen hellorange an der Basis, Rückenflosse und Schwanzflosse hellgrau

Lebensraum: An der Gewässeroberfläche in den Uferbereichen, aber auch im Freiwasser

Laichzeit: Sommer (mehrere Laichphasen)

Laichplätze: seichte, kiesige Uferbereiche

Eier sind klebrig und haften an Kies oder anderen Strukturen

Reproduktionserfolg: gering

Ernährung: Zooplankton, Anflug

Länge: bis ca. 20 cm

Erstbesatz: 1952

Besatz: sporadisch

8.15 **Amur (Ctenopharyngodon idella)**

Bestimmungsmerkmale

Körperform: spindelförmig mit breitem, oben und unten abgeflachtem Kopf

Maulform: leicht unterständig, **ohne Bartfäden**

Schlundzähne: **zweireihig: 1-2.4-5 – 4-5.2**

Schuppen: groß mit dunklem Rand

Schuppen entlang der Seitenlinie: 42 - 45

Flossenstrahlen: Rückenflosse: 3 Hartstrahlen, 7 Weichstrahlen

 Afterflosse: 3 Hartstrahlen, 8 Weichstrahlen

Lebensraum: krautbewachsene Bereiche bis ca. 8 m Tiefe (Beginn der Sprungschicht)

Laichzeit: keine

Reproduktionserfolg: keiner

Ernährung: Wasserpflanzen (Armleuchteralggen, Tausendblatt, Laichkräuter)

Länge: bis ca. 110 cm (über 20 kg)

Erstbesatz 1968

Besatz: seit den 1980-er Jahren nicht mehr

Auszänge seit 1991

Da der Amur in den letzten 20 Jahren nicht mehr besetzt wurde, nahm der Ausfang besonders in den letzten Jahren kontinuierlich ab (Tab. 15).
8.16 Silberkarpfen (*Hypophthalmichthys molitrix*)

Bestimmungsmerkmale

Körperform: gestreckt, etwas hochrückig, seitlich abgeflacht mit breitem, zugespitztem Kopf, die Bauchseite bildet einen durchgebogenen Kiel von der Kiemenöffnung bis zum Ansatz der Afterflosse

Maulform: Maulspalte groß, oberständig, ohne Bartfäden

Schlundzähne: einreihig: 4 – 4

Schuppen: klein

Schuppen entlang der Seitenlinie: 110 - 124

Flossenstrahlen: Rückenflosse: 3 Hartstrahlen, 7 - 12 Weichstrahlen

Afterflosse: 2-3 Hartstrahlen, 12 - 14 Weichstrahlen

Bauchflosse: 8 Weichstrahlen

Lebensraum: Bereiche bis ca. 8 m Tiefe (Beginn der Sprungschicht)

Laichzeit: keine

Reproduktionserfolg: keiner

Ernährung: Algen (werden gefiltert)

Länge: bis ca. 100 cm (über 20 kg)

Erstbesatz: um 1985

Besatz: keiner

Der Silberkarpfen ist aus ökologischer Sicht auf Grund der sehr geringen Stückzahl für den Weißensee ohne Bedeutung. Er ist ein reiner Algenfiltrierer und trotz der allgemein geringen Algenbiomasse ist seine Wachstumsleistung ganz beachtlich. Trotzdem ist diese Fischart, auf Grund der geringen Algenbiomasse im Weißensee, wohl der ungeeignetste Besatz überhaupt. Auch für die Angelfischer ist der Silberkarpfen durch seine Ernährungsweise ohne Bedeutung.
8.17 Bitterling (*Rhodeus sericeus amarus*)

Bestimmungsmerkmale

Körperform: hochrückig, seitlich abgeplattet

Maulform: klein, endständig

Schlundzähne: einreihig: 5 - 5

Schuppen: **Seitenlinie unvollständig**, erstreckt sich nur über 5 - 6 Schuppen

Schuppen entlang der Seitenlinie: (4-) 5 - 6 (-7)

Flossenform: Ende der Basis der Rückenflosse hinter dem Vorderende der Afterflosse

Flossenstrahlen: Rückenflosse: 3 Hartstrahlen, 9 - 12 Weichstrahlen

Afterflosse: 3 Hartstrahlen, 8 - 10 Weichstrahlen

Brustflosse: 1 Hartstrahl, 10 - 11 Weichstrahlen

Bauchflossen: 2 Hartstrahlen, 6 - 7 Weichstrahlen

Färbung: Rücken graugrün, Seiten silberglänzend, **mit blaugrün leuchtendem Längsstreifen von der Seitenmitte bis zum Schwanzflossenansatz**, Männchen zur Laichzeit in schillernden Farben

Lebensraum: pflanzenbewachsene Uferregionen vor allem im Westteil des Weißensees,

Laichzeit: Sommer (mehrere Laichphasen)

Laichplätze: Großmuscheln (Teichmuschel)

Eier werden vom Weibchen mit einer Legeröhre in die Muschel abgegeben. Unter dem Schutz der Muschel schlüpfen die jungen Bitterlinge

Reproduktionserfolg: ?

Länge: bis ca. 5 cm

Erstbesatz: zwischen 1968 und 1970 (mit Teichmuscheln)

Besatz: keiner

Laube Konkurrenzphänomene, erhöhter Raubdruck und ein eventueller zusätzlicher Parasitenbefall in Frage.

8.18 **Giebel (Carassius auratus gibelio)**

Bestimmungsmerkmale

- **Körperform**: gedrungen, hochrückig
- **Maulform**: endständig, **ohne Bartfäden**
- **Schlundzähne**: einreihig: 4 - 4
- **Kiemenreusendornen**: **lang, dünn, am ersten Kiemenbogen 35 - 50 Stk**
- **Bauchfell**: **stark pigimentiert (schwarz)**
- **Schuppen entlang der Seitenlinie**: 26 - 35
- **Flossenform**: Rückenflosse hoch mit **geradem** oder leicht konvexem Rand, 1. Strahl am Hinterrand **stark gesägt**
- **Flossenstrahlen**: Rückenflosse: 3 Hartstrahlen, 14 - 22 Weichstrahlen
 - **Afterflosse**: 2 Hartstrahlen, 5 - 9 Weichstrahlen
 - **Brustflosse**: 13 - 16 Weichstrahlen
 - **Bauchflosse**: 2 Hartstrahlen, 8 Weichstrahlen
- **Färbung**: Bauch und Seiten mit Silberglanz, kein schwarzer Fleck auf der Schwanzwurzel
- **Reproduktionserfolg**: keiner
- **Länge**: bis ca. 40 cm
- **Erstbesatz**: 1986
- **Besatz**: keiner

Ein sicherer Nachweis für ein derzeitiges Vorkommen konnte nicht erbracht werden.

In Europa kommen nur weibliche Fische vor, die sich zur Laichzeit unter andere laichende Fischarten (Karpfen, Karausche) mischen. Durch die Abgabe der Samen dieser Fischarten wird die Entwicklung der Giebeleier aktiviert. Aus diesen Eiern gehen wieder nur weibliche Fische hervor. Daher ist es auch denkbar, dass ein einziges Weibchen einen Bestand in einem Gewässer aufbauen kann und schließlich als Massenfischart vorkommt.
8.19 **Karausche (Carassius carassius)**

Bestimmungsmerkmale

Körperform: gedrungen, hochrückig, seitlich abgeplattet
Maulform: endständig, ohne Bartfäden
Schlundzähne: einreihig: 4 - 4
Kiemenreusendornen: **am ersten Kiemenbogen 22 - 33 Stk.**
Bauchfell: **meist nicht pigmentiert (hell)**
Schuppen entlang der Seitenlinie: 31 - 48
Flossenform: Rückenflosse hoch mit **konvexem Rand**, 1. Strahl am Hinterrand nicht oder nur **schwach gesägt**
Flossenstrahlen: Rückenflosse: 3 - 4 Hartstrahlen, 14 - 21 Weichstrahlen
 Afterflosse: 2 - 3 Hartstrahlen, 6 - 8 Weichstrahlen
 Brustflosse: 1 Hartstrahl, 13 - 16 Weichstrahlen
 Bauchflosse: 2 - 3 Hartstrahlen, 7 - 8 Weichstrahlen
Färbung: Rücken meist dunkel olivgrün, Seiten heller, Bauch gelb bis braun, auf der **Schwanzwurzel meist ein dunkler Fleck**, Brustflossen, Bauchflossen und Afterflosse besonders bei jungen Tieren mattrot
Länge: bis ca. 40 cm
Erstbesatz: ab 1970?
Besatz: keiner

Im Gegensatz zum Giebel kommen männliche und weibliche Fische vor. Für die Ökologie des Weißensees und als Angelfisch spielt die Karausche so wie der Giebel keine Rolle.

8.20 **Brachse (Abramis brama)**

Bestimmungsmerkmale

Körperform: hochrückig, seitlich stark zusammengedrückt, stumpfe Schnauze
Maulform: fast unterstützt
Augendurchmesser: **geringer als die Schnauzenlänge**
Schlundzähne: einreihig: 5 - 5
Schuppen entlang der Seitenlinie: 50 - 60
Flossenform: Basis der Afterflosse ist mehr als doppelt so lang wie die der Rückenflosse, Vorderende der Afterflosse unter der Mitte der Basis der Rückenflosse,
Afterflosse mittellang; **Brustflosse reicht bis zur Wurzel der Bauchflosse**

Flossenstrahlen:
- Rückenflosse: 3 Hartstrahlen, 9 Weichstrahlen
- Afterflosse: 3 Hartstrahlen, 23 - 28 (-30) Weichstrahlen
- Brustflosse: 1 Hartstrahl, 15 Weichstrahlen
- Bauchflosse: 2 Hartstrahlen, 8 Weichstrahlen

Färbung: Rücken bleifarben bis schwärzlich, nach den Seiten zu heller, Bauch weiß

Lebensraum: verkrautete Flachwasserbereiche, v. a. im Westteil des Weißen Sees

Reproduktionserfolg: ?

Länge: bis ca. 65 cm (ca. 3 kg)

Besatz: ab 1950?

8.21 Gründling (*Gobio gobio*)

Bestimmungsmerkmale

- **Körperform:** spindelförmig, Schwanzstiel relativ kurz und hoch und seitlich kompress, Schnauze stumpf
- **Maulform:** unterständig mit 2 **Bartfäden**, die zurückgelegt höchstens die Mitte der Augen erreichen
- **Schlundzähne:** zweireihig 2-3.5 – 5.2-3
- **Schuppen:** Kehle unbeschuppt, Seitenlinie oben und unten von dunklen Punkten eingefasst, keine epithelialen Kiele
- **Schuppen entlang der Seitenlinie:** 38 - 45
- **Flossenform:** Schwanzflosse gegabelt
- **Flossenstrahlen:**
 - Rückenflosse: 2 - 3 Hartstrahlen, 7 - 8 Weichstrahlen
 - Afterflosse: 2 - 3 Hartstrahlen, 6 - 7 Weichstrahlen
 - Brustflosse: 1 Hartstrahl, 14 - 16 Weichstrahlen
 - Bauchflosse: 2 Hartstrahlen, 7 - 8 Weichstrahlen
Färbung: Rückenflosse mit dunklen Punkten, Rücken braunschwarz bis grünlich, nach den Seiten aufhellend, Bauch silberglänzend mit rötlichem Schimmer, Rücken mit mehreren dunklen Flecken, Seiten mit einer Reihe unregelmäßiger, schwarz-violetter bis bläulich leuchtender Flecken.

Reproduktionserfolg: keiner.

Länge: bis ca. 20 cm.

Erstbesatz: autochthon.

Besatz: keiner; vor mind. 25 Jahren aus dem Weißensee verschollen.

8.22 Elritze (*Phoxinus phoxinus*)

Bestimmungsmerkmale

Körperform: Körper langgestreckt, fast drehrund, zum Schwanzstiel hin seitlich abgeflacht

Maulform: klein und endständig

Schlundzähne: zweireihig 2.4-5 – 4-5.2

Schuppen: **klein, Seitenlinie unvollständig**, hinter der Körpermitte unterbrochen

Schuppen entlang der Seitenlinie: 77 - 92

Flossenstrahlen: Rückenflosse: 2 - 3 Hartstrahlen, 6 - 8 Weichstrahlen

 - Afterflosse: 3 Hartstrahlen, 6 - 7 Weichstrahlen
 - Brustflosse: 1 Hartstrahl, 14 - 16 Weichstrahlen
 - Bauchflosse: 2 Hartstrahlen, 7 - 8 Weichstrahlen

Färbung: Vom Rücken bis unter die Seitenmitte **dunkle Querbinden oder Flecken**, fallweise schwarzer Längsstreifen, goldglänzender Längsstreifen, Körperunterseite hell

Lebensraum: klare sauerstoffreiche Fließgewässer und Seen mit Kiesgrund.
Reproduktionserfolg: keiner
Länge: bis 10 cm
Erstbesatz: autochthon
Besatz: keiner

Krebse beseitigen frische tote Fische und Frösche innerhalb kürzester Zeit restlos und werden daher häufig zu Recht als „Gewässerpolizei“ bezeichnet. Mit Vorliebe fressen sie aber auch abgefallenes Laub, Wasserpflanzen, Schnecken und Muscheln.

